Listen to any quarterly earnings call from major logistics services firms like UPS and FedEx, and you’re bound to hear a plethora of statistics that deal with delivery performance: average miles per delivery stop, stops per route, packages per driver hour, cost per package, on-time delivery rate, etc.
These figures matter a great deal because they help determine the company’s profitability (or loss) that quarter, as indicators of operating performance expressed in KPIs. They also have a great deal to do with the concept of route optimization, the art and science of executing deliveries as efficiently as possible.
Within the broader scope of logistics planning – coordinating the movement, storage, and flow of goods within a supply chain – route optimization plays a key role. Transportation managers put a great deal of effort into reducing total miles, eliminating delays, and improving route density metrics (number of stops, packages per stop, per driver, etc.). Performance goals include higher on-time rates, lower operating costs, and higher customer satisfaction, among other key business objectives.
We’ll take a closer look at route optimization, why it matters, how it’s achieved, and the technology behind it.
Aspects of Route Optimization
In logistics and transportation, whether truckloads from a plant to a distribution center or stepvans from a hub to a local run, route optimization involves finding the most efficient travel paths. Factors include the distance between points, traffic patterns, delivery windows, fuel costs, and vehicle capacity.
Determining the best fleet to use in each case is also an important success factor. Transportation managers must not only select between different vehicle types and sizes for each set of deliveries, but also the right number of each type based on fixed and variable costs. Fixed costs include driver salaries and wages, vehicle leasing or depreciation, insurance, licensing and permits, and administrative costs. Variable costs include fuel, driver overtime, maintenance and repairs, tolls, loading and unloading, and third-party fees when using a logistics provider.
In addition to vehicle type and size, other route optimization variables include product suitability and restrictions (i.e., refrigerated), road networks, customer time windows, backhaul opportunities, driver hours of service (HOS), efficient load building, and fuel/rest stop planning.
Balancing fixed and variable costs is important because it helps achieve route optimization by minimizing the total cost per delivery while maintaining efficiency and delivery schedules. By selecting the right number of vehicles, adjusting for stop density, and optimizing distances, businesses can achieve substantial savings and performance gains.
Why Route Optimization is Crucial
Through route optimization businesses can achieve greater cost efficiency, improve delivery performance, and foster sustainability. By identifying the most efficient travel routes, they can minimize fuel consumption, lower labor costs, and reduce vehicle wear and tear. This is particularly important in a competitive environment where even small cost savings can spell the difference between a division’s profit and loss.
Optimized routing helps ensure timely deliveries, improving service reliability and customer satisfaction. From an environmental perspective, it means reduced fuel usage and lower carbon emissions, supporting sustainability initiatives and regulatory compliance. This is also something that can resonate with customers who value greener transportation.
Route optimization also helps companies maximize resource utilization through increased efficiency of vehicle, driver, and asset usage. By balancing fleet capacity, stop density, and delivery schedules, transportation managers can reduce empty miles and truck idling. The result: more streamlined operations, better use of resources, and improved performance.
Logistics Challenges Affecting Route Optimization
It’s hard to believe given technological advances across logistics functions, but manual route planning is still widespread, especially among small to mid-sized businesses. Many companies continue to rely on a combination of spreadsheets, paper maps, or simple routing tools for delivery and route planning. These methods are often in use when delivery volume is manageable and the network is relatively small. But they are inefficient, lack scalability, increase costs and risk customer dissatisfaction.
As supply chains become more complex and expectations increase, the use of route optimization software is growing. Advanced tools like transportation management systems (TMS), GPS tools, and AI are becoming much more common. They all leverage real-time data, machine learning and predictive analytics to optimize routes based on factors such as traffic, weather, fuel costs, and delivery windows.
Larger enterprises – both logistics providers and shippers – rely heavily on advanced route optimization technology to manage vast delivery networks. As e-commerce growth and customer expectations rise, more companies are shifting toward automated solutions to stay competitive and improve operational efficiency.
The Role of Technology
Technology has revolutionized route optimization, enabling businesses to streamline logistics and reduce costs. Route optimization software integrates GPS, telematics, and algorithms, analyzing real-time and historical data to create the most efficient travel paths. These tools consider variables like traffic patterns, weather, delivery time windows, and vehicle capacity.
AI and machine learning enhance these capabilities with predictive analytics, looking at traffic trends, fuel costs, and customer demand to anticipate delays and proactively recommend adjustments. Machine learning models continuously refine routing strategies by analyzing historical data, improving accuracy and adaptability.
By integrating these technologies into logistics planning, companies can reduce total miles driven, minimize delays, and optimize resource use. This helps them achieve their key goals (cost savings, higher on-time delivery rates, improved customer satisfaction).
Key Features of Route Optimization Software
Route optimization software gives logistics managers an advanced tool for improving efficiency and reducing costs. A key feature is vehicle selection. When the optimal vehicle is chosen for each route based on capacity, cost, and suitability, it maximizes utilization and reduces costs. Dynamic route adjustments allow for real-time updates based on changing traffic, weather conditions, or unexpected delays, helping maintain on-time performance.
Multi-stop optimization efficiently sequences stops for deliveries, reducing total miles driven and improving route density. Beyond basic stop sequencing, route optimization software should be designed to handle the complexity, nuances and business rules of each company. This could include factoring things like load building based on relative item weight, customer delivery windows, and site restrictions, to optimize stop sequencing.
System integration ensures seamless communication with WMS, TMS, and fleet management systems (FMS), providing end-to-end visibility across functional areas. And driver behavior analytics enhance efficiency and safety by monitoring factors such as speed, braking patterns, and fuel consumption.
Best Practices for Implementation
Successfully implementing route optimization software requires a strategic approach. Start by defining clear objectives that align with your business goals. This includes identifying key metrics such as cost savings, delivery speed, or carbon emissions reduction in order to measure success effectively.
Invest in scalable technology that can grow with your business. As you expand or deal with demand spikes, the solution should be able to adapt to meet changing demands without disrupting workflows.
Provide thorough training in order to maximize the benefits of routing tools. A well-trained workforce leads to better decision-making and greater efficiency.
Prioritize continuous monitoring and adjustment. Real-time analytics can identify inefficiencies, respond to changing conditions, and fine-tune processes. Regular reviews ensure the system continues to deliver value over time and adapts to evolving challenges.
Partnering with the Right Technology Provider
Key characteristics to look for include proven expertise in logistics software and analytics, as well as an understanding of your industry's specific needs. Scalability is another important requirement, future-proofing the technology so it can grow with your business and adapt to changing needs. The ability to provide seamless integration via API or EDI with WMS, TMS, and FMS sets up real-time data sharing and better collaboration across the supply chain.
The right provider should be able to deliver a realistic implementation timeline that factors in data readiness, integration complexity, user training and any customization. For SMBs with fewer requirements, it can happen in a matter of weeks; in more complex enterprise scenarios it can take 3-6 months, often in a phased rollout.
Continuous updates ensure the technology stays on track with advances in AI, machine learning, and predictive analytics. The provider should also be able to deliver a tailored solution that addresses your unique requirements. This will help optimize performance, increase efficiency and cost savings, and improve delivery speed and accuracy, delighting customers and building loyalty.
A Tech-Driven Route To Greater Transport Efficiency
Route optimization has become a cornerstone of supply chain management, and a reliance on outdated manual processes falls woefully short of achieving its goals. Through advanced technology, businesses can become more efficient, save on costs, and improve customer satisfaction and sustainability.
Tramm, an innovator in supply chain technology, has developed a cloud-based end-to-end TMS platform that combines route planning and load building, transporter management, order management, a logistics control tower, and a mobile app. With this approach, Tramm has solved the problem of fragmented supply chain systems, integrating key functions into a unified, scalable system.
Tramm’s Planning and Optimization Module leverages powerful algorithms to handle complex routing environments, accounting for variables that accurately reflect on-the-ground transport operations. Its dynamic multi-day route planning handles scheduling for primary, secondary, and service-based fleets. Users can easily make real-time adjustments based on changing needs, including “what if” visualization and scenarios. A load builder/stackability app automatically plans loads that are tightly synced with capacity and route optimization.
To find out how Tramm’s unified approach can drive transportation efficiency and cost savings while helping you realize sustainability goals, request a demo today.
Related Resources
Managing Large Order Loads to Reduce Split Shipments
In the world of B2B commerce, having an efficient order management process is a baseline capability. Especially when large order loads are involved, the ability to achieve a high percentage of orders shipped complete drives significant transportation savings, as split shipments eat away at margins.
There are several factors that drive an increased reliance on split shipments for large order loads, sometimes acting in combination to exacerbate the issue. These include how inventory is distributed in a network, the pressure on stock levels from large orders, and the operational strain it can cause. That’s why order management precision and efficiency is at such a high premium, especially when disruptions like a major port strike throw a wrench in the works.
This article examines split shipments and the issues they cause within the supply chain and distribution and explores some best practices to avoid them. The aim is to help reduce operating expenses, improve product availability, and increase customer satisfaction.
Definition and Causes of Split Shipments
A split shipment happens when an order is divided into multiple shipments due to low stock levels, logistical constraints, or both. Often, businesses feel forced to ship what’s available immediately and send the rest later, hoping that customers can get by on the partial order in the meantime.
Some common causes of split shipments on large B2B orders include the following:
- Multiple suppliers: Variations in supplier lead times or stock availability can cause parts of the order to arrive at different times.
- Order complexity: Large orders often involve diverse products with different handling, storage, or shipping requirements. For instance, temperature-sensitive or hazardous goods requiring specialized transportation often lead to separate shipments.
- Order prioritization: High-priority, in-demand products are time-sensitive, which can lead to shipping what’s on hand separately while waiting for replenishment to send the rest.
- Warehouse fulfillment: Large orders can tax the resources of warehouse operations. SKUs stored in different locations or those requiring a different picking process can cause delays, leading to split shipments.
- Backorders and lead time variation: Some items have significantly different supplier lead times, forcing businesses to ship only a portion of their available inventory and put the balance on backorder.
- Inefficient systems: Without an advanced order management system (OMS), businesses lack real-time inventory visibility across multiple locations. This leads to fragmented fulfillment decisions and more split shipments.
The High Cost of Split Shipments
While some split shipments are inevitable or unavoidable due to external factors, costs go up along with higher frequency. Transportation is clearly the highest direct cost, as it’s generally the second highest expense as a percentage after labor, and more trips are required. There’s also the added complexity of scheduling additional pickups with transporters.
Speaking of labor, split shipments also hit this cost center, as they lead to more man-hours spent preparing orders through picking and packing.
Indirect costs include damage to customer relationships and reputation and the potential loss of future business. B2B customers rely on complete orders to meet production schedules or product demand. As a result, many retailers have implemented on-time in-full (OTIF) requirements. The idea is to enforce greater supply chain optimization by tight collaboration among retailers, brands, transporters, and logistics service providers.
Failure to meet OTIF requirements results in fines and penalties. A McKinsey study found that many retailers in North America are tightening OTIF requirements by narrowing delivery windows and increasing fines while revising the definition of in-full delivery.
A higher incidence of split shipments can reflect deeper issues of poor inventory management, such as stock imbalances or inefficient replenishment processes. Finally, they contribute to higher carbon emissions from the additional truck trips required.
Other Split Shipment Headaches in B2B
Split shipments introduce complexities that impact multiple areas of operations, including order tracking, invoicing, and customer communication. Each contributes to inefficiencies, often leading to higher costs, increased labor, and a decline in service quality.
Tracking Complexity
When shipments are split, tracking the order status becomes more complicated because different segments move independently through the supply chain. Logistics teams have to track each portion of the order separately, from inbound inventory to fulfillment and delivery. This involves monitoring multiple tracking numbers, the status of transporters, and estimated delivery times.
Managing Multiple Invoices
Split shipments often lead to multiple invoices, complicating accounts payable for both the shipper and customer, including reconciliation of multiple invoices against the original order. Each invoice might include different shipping costs, taxes, and fees, adding to administrative overhead. In some cases, customers might withhold payment until the entire order is delivered, adding more complexity and delaying closing the transaction.
Customer Communications
In B2B transactions, logistics and delivery impact a customer’s production schedules, inventory levels, and downstream operations. Shippers need to manage expectations around timing, coordination, and delivery schedules. Customers often rely on complete shipments to avoid production downtime, which causes frustration and the pain of adjusting internal processes.
Split shipments also require customers to coordinate with receiving teams across multiple deliveries. Additional labor and resources are needed to accept, inspect, and verify each portion of the order upon arrival.
Leveraging Technology to Optimize B2B Order Management
Advances in technology for supply chain and logistics have made it easier for businesses to optimize their inventory and order management processes in order to reduce the incidence of split shipments. Here are some examples.
WMS
A warehouse management system (WMS) provides real-time updates on inventory levels, enabling better decision-making and reducing stock-outs that lead to split shipments. Most systems can also automate inventory replenishment to ensure that items in high demand remain in stock, reducing the need for split shipments.
OMS
An order management system (OMS) integrates order data from various sources (e-commerce platform, ERP, CRM, WMS, etc.), providing visibility into inventory availability. This helps drive a higher percentage of “order complete” confirmations before shipment. An OMS also has consolidation logic for prioritizing full order fulfillment vs. partial shipments.
Tramm, a developer of a leading unified supply chain management platform, combines a powerful OMS within its transportation management system (TMS) suite. This integrated approach provides end-to-end visibility and control over order fulfillment and shipping processes. Tramm’s Order Management Module ensures that orders are fully consolidated before being released for shipment, while the TMS manages transportation in the most efficient, cost-effective manner.
Using real-time data synchronization, Tramm’s integrated approach ensures that any changes in order status, inventory levels, or shipping schedules are immediately reflected across both systems. This allows the OMS to quickly adjust fulfillment strategies if stock availability or transporter issues arise, reducing the need to rely on split shipments.
Predictive Analytics and Demand Forecasting
Predictive analytics tools tap the power of AI to enable proactive inventory management. By more accurately forecasting demand and optimizing inventory levels, both stockouts and split shipments are reduced. This technology enables users to foresee potential supply chain disruptions and adjust fulfillment strategies accordingly.
Automated Fulfillment and Transporter Routing
Fulfillment automation reduces errors in picking/packing, allowing a higher percentage of full orders to be processed and minimizing the need for split shipments.
Smart routing automatically directs orders to the most appropriate warehouse or fulfillment center, optimizing shipments and reducing transportation costs. Tramm’s Planning & Optimization Module uses advanced algorithms and visualization tools to drive better, faster load and routing decisions. The result is operational cost savings, including reduced split shipments and highly responsive planning capabilities.
Supplier Collaboration and Data Sharing
Collaborative planning includes sharing inventory and demand data with suppliers, improving stock replenishment, and reducing the likelihood of split shipments. By employing Vendor-Managed Inventory (VMI), suppliers manage stock levels, helping ensure that products are consistently available. This minimizes the need for split shipments due to out-of-stocks.
Best Practices to Minimize Split Shipments in B2B Order Management
Companies can take several steps to improve their order management processes, increase efficiency, and increase the percentage of “shipped complete” orders.
Centralized Inventory Management
Centralized inventory involves keeping all stock in one primary location, such as a warehouse, fulfillment center, or other storage facility. This central hub typically manages not only inventory but also key logistics functions like order processing and fulfillment.
In a centralized inventory system, the majority of operations, including order management and distribution, are handled from this single location, even when there are multiple sales channels or retail outlets. This strategy reduces the need for split shipments due to inventory imbalances.
Order Consolidation Policies
Order consolidation involves combining multiple orders into a single shipment. This can be done by centralizing items from multiple orders into a single location or by combining multiple orders from different sales channels into a single system.
Order consolidation can benefit businesses in several ways. This includes lower transportation costs based on economies of scale, better management of stock levels due to fewer shipments, overall simplified logistics, and a better customer experience through more complete orders.
Smart Reordering Strategies
Smart reordering is a rules-based, automated process utilizing data analytics and AI to manage inventory levels and optimize replenishment. Unlike traditional reordering, which relies on manual tracking or fixed schedules, smart reordering uses real-time data (sales trends, demand forecasting, lead times, supplier performance, etc.) to predict when SKUs will need to be replenished.
This approach helps ensure that critical and/or high-demand products are always in stock, preventing backorders and reducing the need for split shipments.
Transparent Customer Communication
This seems like an obvious point, but too many organizations fail to keep customers updated on order status. This is especially important when unexpected drops in inventory levels or logistics snafus require a split shipment.
Always give customers the option of waiting for replenishment to send a complete order or receiving a partial shipment first. In some cases, the added expense of expedited transportation comes into play to make things right and keep to their schedule.
Continuous Monitoring and Adjustment
Regularly analyzing order data helps identify patterns that lead to increases in split shipments. By tracking trends in demand, stock levels, and fulfillment performance, you can proactively adjust inventory management, including redistributing stock across locations or improving order consolidation processes.
Leaning On Technology to Optimize Large Order Loads
Minimizing split shipments is important to maintain supply chain efficiency and reduce transportation costs. Software such as OMS, WMS, and predictive analytics tools can improve inventory management and streamline fulfillment processes. Best practices such as smart reordering, order consolidation, and continuous monitoring help reduce the incidence of split shipments.
Tramm integrates transporter management, route optimization, order management, customizable dashboards, and a control tower to optimize routing and order allocation. When shipments do need to be split, Tramm automates the process based on operational and resource requirements.
Tramm’s FleetVision Module gives users access to precise real-time data and insights. With a better understanding of fleet operations on a granular level, they can manage each load more effectively and implement performance improvement measures. The result is greater efficiency, reduced costs, and improved customer satisfaction.
To learn more about how Tramm can drive measurable improvement in your supply chain and logistics operations, request a demo today.
Sustainable Logistics: How Optimized Routing Can Reduce Your Carbon Footprint
The world of logistics and transportation cannot afford to slow down, and the trend toward sustainable logistics is working hard to catch up. Demand for shipping and delivery services is only increasing in a fast-moving, interconnected global economy. But with this growth comes greater pollution levels from vehicles and logistics networks.
For this reason, it shouldn’t be surprising that 75% of logistics companies have a focus on sustainability, according to a May 2024 survey by the Germany-based Logistics Hall of Fame. A majority of respondents rated the risk of financial loss due to climate change as “medium to high.”
This is why major efforts are underway to reduce trucking-generated pollution by implementing a sustainable logistics program. These include efforts to optimize routing, grow alternative fuel fleets, increase the use of automation, enforce stricter emissions standards, and ramp up intermodal transportation.
Optimized routing, in particular, has emerged as a powerful tool to not only reduce transportation costs but also significantly minimize carbon emissions, making logistics operations more sustainable.
The Environmental Impact of Logistics
Transportation contributes more than a third of all CO2 emissions globally, with nearly two-thirds of that coming from trucking, according to the International Energy Agency (IEA). In addition, transportation relies on petroleum products for nearly 91% of its energy, down just 3.5 percentage points from the early 1970s.
Excessive fuel usage in everything from long-haul trucking to last-mile delivery, traffic congestion, and poorly planned routes contribute to higher CO2 emissions. At the same time, regulatory pressure and consumer demand for more sustainable business practices are forcing companies to adapt.
The Basics of Route Optimization
Route optimization tools use advanced algorithms and predictive analytics, parsing historical and real-time data to identify the most efficient delivery routes. Factors taken into account include traffic conditions, weather, vehicle capacity, delivery windows, and road restrictions.
Many routing tools within a transportation management system (TMS) also include load optimization capabilities, enabling companies to maximize their available freight capacity and improve key metrics like revenue per mile, cost per delivery, and fleet utilization.
State-of-the-art route optimization tools employ dynamic multi-day route planning and scheduling across trucking modes, everything from LTL, TL, middle mile, last mile, private fleet and dedicated transportation services.
Reducing Fuel Consumption and Carbon Emissions
As route optimization enables companies to reduce the number of miles driven, an immediate, tangible benefit is a significant saving on fuel consumption.
These tools also allow drivers to avoid areas of traffic congestion, helping to improve on-time delivery performance. This not only reduces truck dwell time and, thus, tailpipe emissions, but also increases customer satisfaction.
By optimizing load capacity, companies can put fewer trucks on the road, further reducing fuel usage and emissions — further driving sustainable logistics.
The Role of Real-Time Data in Sustainable Routing
Access to real-time data on traffic, weather, and road conditions allows for dynamic rerouting to avoid delays and minimize emissions. Traffic data can come from GPS systems and platforms like Google Maps or Waze for information on congestion, accidents, and road closures.
Weather data from apps like The Weather Channel or OpenWeatherMap provide updates on conditions (thunderstorms, high wind, fog, snow) that might affect a trip, rerouting if necessary. Telematics and sensors take in data on vehicle location, speed, fuel usage, and status from onboard systems or fleet management software.
Updates from order management systems (OMS) on delivery windows and customer availability also become part of the routing equation, as does data on weight or height restrictions and road closures from transportation departments. Routing software also tracks fuel efficiency and vehicle performance, reducing environmental impact.
Other Benefits of Route Optimization
In addition to reduced fuel consumption and lower operating costs, route optimization enables faster, more reliable deliveries, improving customer relationships and fostering loyalty.
Optimized routing also helps companies meet their environmental goals through sustainable logistics. This includes compliance with government regulations and qualification for certifications such as LEED, ISO14001, and SmartWay.
Route Smarter, Stay Greener
Route optimization improves logistics efficiency and plays a crucial role in reducing carbon emissions. An investment in this technology helps drive both sustainability and competitiveness in a business climate that increasingly values environmental responsibility. By embracing sustainable logistics practices through the use of these tools, companies can reach their goals while driving down costs through efficiency gains.
Tramm, an innovator in supply chain technology, has developed an end-to-end TMS platform that combines route planning, load building, transporter management, a supply chain control tower, and a powerful mobile app. With this end-to-end approach, Tramm has solved the problem of fragmented supply chain systems by integrating key functions into a unified, scalable platform.
Tramm’s Planning and Optimization Module handles complex routing environments, accounting for variables such as rules and constraints that accurately reflect on-the-ground transport operations. It allows users to easily adapt their plans based on changing needs, including “what if” visualization and scenarios that enable real-time adjustments. A load builder/stackability app lets them automatically plan loads that are tightly synced with capacity and route optimization.
To find out how Tramm’s unified approach can drive transportation efficiency and cost savings while helping you realize sustainability goals, request a demo today.
Why Real-Time Data is Crucial for Optimizing Transport Operations
Transport operations the world over work hand-in-glove with manufacturing to power the world economy. Millions of tons of goods are moved daily by land (truck and train), sea, and air across vast distances to enable international trade and commerce.
The importance of data in transport operations cannot be overstated. It empowers companies to make better decisions, run more efficiently, send and receive shipments on time and (hopefully) reduce costs in the process.
Real-time data, in particular, plays a critical role in optimizing transportation operations. When run through analytical engines, it fuels up-to-the-minute insights into vehicle and container locations, traffic and weather conditions, and many other factors, enabling dynamic adjustments.
Data Provides Quantitative Insight into Complex Transportation Operations
Real-time data is defined as information that is delivered and processed immediately upon collection, allowing for quick decisions based on events as they happen. This type of data is particularly important in industries like global transport and logistics, where conditions affecting transit times are constantly changing.
Traditional data management relies on historical information from the prior day, week, month, quarter, or year. As such, companies employ various analytical methods to develop forecast models on which business decisions are based. Having access to real-time data significantly augments and enhances traditional data management, as it provides a view of actual conditions, activities, and transportation flows.
Tackling the Complexities of Managing Transport Operations
You may have heard that managing transport operations, especially those involving the movement of freight, is incredibly complex. And you would be right. Whether operating a private fleet, dedicated transport, or using third-party carriers, managing booking, routing, scheduling, loading, unloading, maintenance, etc., while keeping within budget is challenging.
Considering all these moving pieces, the high costs, and how business success relies on successful transport execution, the ability to access real-time data becomes that much more critical. Here are some of the key benefits.
- Enhanced decision-making: by leveraging real-time data analytics, transport operations managers have access to the latest information for faster, more accurate decision-making. From the ability to do dynamic routing and scheduling to load optimisation and asset utilization, there are all kinds of benefits that accrue.
- Improved operational efficiency: By enabling real-time tracking and monitoring of shipments, transport managers get instant visibility. Optimized routing and scheduling reduce fuel consumption and improves on-time delivery performance, lowering costs and improving service reliability.
- Increased visibility: Stakeholders such as shippers, customers and logistics partners can access up-to-the-minute information on transit times, ETAs, service disruptions, and performance vs. plan. This transparency improves customer satisfaction and aids in continuous improvement planning.
- Proactive issue management: Through early detection and alerting to potential disruptions, transportation managers can quickly enact contingency plans, setting in motion alternative routes and backup carriers to resolve issues before they escalate.
Real-Time Data in Action: How It Transforms Transport Operations
By leveraging real-time data, fleet managers go from being reactive and contending with potential gaps in information between reported vs. actual activity to being proactive and equipped with meaningful information that helps them improve performance.
Real-time data analytics is the fuel behind Tramm. An innovative transportation management system (TMS), Tramm’s suite features planning and route optimisation, transporter management, real-time visibility, and actionable business insights. It helps fleet managers elevate their operations internally and for customers.
Real-Time Vehicle Tracking and Status Updates
Tramm’s FleetVision module leverages real-time data from both onboard GPS and a proprietary driver app to continually track the location of every vehicle in the network. Users can also monitor how trips, loads, and shipment status are progressing vs. plan, get a live look at operational tempo, and automatically issue alerts on any plan deviations.
By monitoring every activity and status in real time, Tramm helps logistics and fleet managers make fast, informed decisions, adjusting routes to avoid delays while improving overall fleet efficiency.
Dynamic Route Optimisation
Tramm’s Route Optimization and Planning module dynamically adjusts routes based on its ability to monitor a range of factors. This allows for a continuous recalibration of delivery schedules and routes, making your transportation plan a model of efficiency and cost-effectiveness.
The system provides immediate feedback on things like running behind on a delivery window or a potential product-vehicle or vehicle-site mismatch. Managers are also notified in real time about vehicle utilization status. By continuously displaying these types of key insights, Tramm helps reduce fuel consumption, minimize delays, and optimize resource allocation.
Real-Time Performance Analytics
Tramm’s Dashboard module integrates real-time data analytics to offer comprehensive insights into network performance. Logistics and transportation managers can view live performance metrics, such as delivery times, operational flow, vehicle bunching, utilization rates, and schedule adherence.
Through powerful analytics, Tramm lets managers identify trends, pinpoint inefficiencies, and implement data-driven strategies to enhance operational performance. They are now empowered to respond swiftly, improving overall network reliability.
In Dynamic Transport Operations, Data Is the Differentiator
A hyper-connected supply chain, with shippers, carriers, freight forwarders, and fleet managers all dependent upon one another, needs real-time data to create a single source of operational truth. It is a true difference-maker, separating successful, highly efficient operations from those struggling to maintain SLAs and KPIs.
Each component of Tramm’s integrated TMS suite utilizes the power of real-time data to drive performance gains in managing transport operations:
- FleetVision Module: Provides live tracking of the planned vs. actual status on vehicles and loads, plus performance analysis, live predictive ETAs, and comprehensive exception management via a control tower view.
- Dashboard Module: A comprehensive data analytics/reporting tool that allows for analysis and data manipulation of the planned versus actual and historical data in the system to help you hit SLAs and drive continuous improvement.
- Mobile App: Provides real-time driver job assignments and updates plus ePOD (proof of delivery) and customizable operational workflow management on the go.
- Order Management: Rules-based order processing automates things like order splitting based on operational and resource requirements, designated delivery days and windows.
- Route Optimization: Handles complex routing scenarios and accounts for the details of each variable, like rules and constraints to accurately reflect actual operations.
- Transact: An easier way to manage loads, Transact allocates carriers based on preset rules and provides visibility into status, while automatically applying complex tariffs.
A Key Capability For Optimizing Transport Operations
Real-time data drives smarter, faster decision-making, improved efficiency, and greater supply chain visibility. It can help you stay competitive and address market challenges and disruptions as they arise.
Tramm’s innovative platform provides powerful capabilities that can transform your fleet operations into a leaner, more responsive, and performance-driven network. Request a demo today!
Synchronized Logistics: Leveraging An Integrated TMS for Real-Time Supply Chain Management
An integrated supply chain TMS helps make tight partner collaboration and data collection from multiple sources possible so goods flow smoothly, SLAs are hit, and production stays on track.
It’s also a key element in synchronized logistics, a process that businesses lean on to manage multiple complex systems. This involves pulling together and analyzing data from disparate sources, all of which touch the supply chain in some way: transportation management systems (TMS), warehouse management systems (WMS), enterprise resource planning (ERP), and even yard management systems (YMS). Using data analytics, synchronized logistics pulls together insights that can then be applied to various supply chain processes.
In this context, an integrated supply chain TMS can achieve synchronized logistics by enhancing business intelligence and optimizing all aspects of transportation. This, of course, has multiple benefits up and down the supply chain, such as faster inventory turns, better delivery metrics, and improved asset utilization, among others.
An integrated TMS uses advanced business intelligence to optimize logistics and transportation by analyzing large sets of real-time and historical data. It helps identify patterns and inefficiencies, predict delays, and recommend optimal routes. Using predictive analytics to forecast demand can optimize capacity utilization and automate decision-making, such as selecting the most cost-effective carriers or adjusting delivery schedules.
An integrated TMS enables more precise planning, cost control, and supply chain efficiency by incorporating data from ERP, WMSs, and other systems. This helps companies improve planning and execution, reduce delays, and respond quickly to disruptions. Using AI-powered data analytics, businesses can fine-tune their operations and keep costs in check.
As the need for real-time supply chain visibility grows, the role of an integrated supply chain TMS becomes even more critical. Its ability to synchronize logistics and provide actionable insights helps companies stay competitive in an increasingly dynamic market.
What is an Integrated TMS in the Supply Chain?
An integrated TMS is a comprehensive platform designed to streamline the core functions of supply chain management: planning, execution, and optimization of transportation activities. It helps businesses plan efficient routes, execute shipments, and optimize delivery schedules to reduce costs and improve performance.
It also helps meet heightened performance expectations by providing visibility and agility across the supply chain. Unlike a traditional TMS with limited connectivity, an integrated TMS hooks into multiple complementary software systems. Creating a cohesive information flow across the supply chain enables more informed decision-making and better cross-functional collaboration. Businesses benefit from real-time tracking, updates, and greater visibility into logistics operations.
The Importance of Real-Time Supply Chain Management
Customers in both B2B and B2C are demanding faster delivery times, more accurate ETAs, tight delivery windows, and real-time updates on order status. Call it the “Amazon effect,” driven by the higher service level expectations created by the mega e-commerce company turned logistics powerhouse. Especially in a tighter economy, there is little margin for error in terms of costs, the balance sheet, and customer churn.
Real-time supply chain management involves continuously monitoring and managing supply chain activities as they happen. This is where synchronized logistics comes into the picture. Real-time data from integrated systems provides immediate visibility into inventory, shipment status, and fulfillment operations. This allows businesses to make quick, informed decisions, optimize routes, and adjust to changing conditions. The result is increased efficiency, cost savings, and improved customer service.
Key benefits of real-time supply chain management include:
Quick response to disruptions: Real-time supply chain management enables businesses to respond swiftly to issues like traffic, port congestion, or weather delays. With immediate access to updated data, they can quickly adjust routes, reschedule shipments, and notify customers, minimizing delays and maintaining operational efficiency.
Optimized route planning: Real-time data from TMSs allows businesses to dynamically optimize routes based on current conditions such as traffic or road closures. This reduces transit times, improves fuel efficiency, and enhances on-time delivery rates, leading to cost savings and improved KPIs.
Improved customer satisfaction: Accurate real-time tracking ensures customers receive up-to-date information on shipment status, including greater accuracy in delivery estimates. This transparency and proactive communication build trust and loyalty by enhancing customer experience (CX), helping companies exceed delivery expectations, and improving customer satisfaction.
Core Features of an Integrated TMS That Supports Synchronized Logistics
An integrated supply chain TMS offers a wide array of features designed to improve supply chain management and logistics flow:
Real-Time Tracking and Visibility
A supply chain TMS allows you to monitor each shipment from order to delivery by providing continuous updates on shipment location, inventory status, and delivery progress. This level of transparency allows you to quickly address potential issues (delays, misrouting, breakdowns) before they escalate. The system’s ability to provide real-time views into supply chain flow improves accountability and efficiency.
Advanced Data Analytics
Integrated TMS platforms use predictive analytics to anticipate delays, optimize routes, and improve decision-making. Predictive and even prescriptive insights allow businesses to proactively avoid disruptions and refine logistics strategy.
Automation and Collaboration
Automation tools facilitate freight scheduling, real-time communication with carriers, and stakeholder collaboration. This reduces manual intervention and enables teams to focus on higher-value tasks.
Seamless Integration
An integrated TMS connects with other systems to synchronize supply chain operations. This ensures data flows smoothly between departments, teams, and partners, helping streamline processes and reduce delays.
Overcoming Common Supply Chain Challenges with Integrated TMS
An integrated TMS helps businesses address several common supply chain challenges:
Reducing delays and inefficiencies: Real-time updates allow companies to anticipate and avoid delays. With real-time visibility, businesses can reroute shipments or adjust schedules to minimize disruptions.
Improving demand forecasting and inventory management: Data generated by a TMS helps logistics planners maintain lean inventories while still meeting customer demand. With accurate, up-to-date information on shipment status and inventory levels, they can more closely align supply with demand, reducing the risk of stockouts or overstocking.
Adapting to market changes: Market volatility and changes in consumer behavior can disrupt supply chains. An integrated TMS helps businesses become agile through real-time adjustments to routes, carriers, or schedules in response to changing conditions.
The Role of Data in Synchronized Logistics
Data is the backbone of synchronized logistics. An integrated TMS collects, processes, and analyzes vast amounts of data to drive more informed decision-making.
A TMS provides real-time data, enabling better decision-making in procurement, route optimization, and warehouse management. Accurate, timely information helps businesses be more proactive and improve overall efficiency.
Many advanced TMS platforms incorporate AI and machine learning algorithms to predict risks, optimize freight rates, and automate repetitive tasks. These technologies enhance the system’s ability to make real-time adjustments, delivering improved operational efficiency and reduced costs.
By leveraging real-time data, businesses can provide more accurate information to customers about shipment status, improving transparency and loyalty. Data-driven synchronized logistics enhances CX by ensuring timely deliveries and proactive communication.
Choosing the Right Integrated TMS for Your Business
Some attributes of an integrated TMS include its intuitive UI, which makes it easy for nontechnical users to manage both owned and contracted transportation assets. This includes streamlining aspects of transportation management, such as contracts and payments.
Scalability is another important feature, as well as a cloud architecture and ease of integration with other systems through API connections. A supply chain TMS should also be customizable and rules-based, adaptable to prioritize the execution of last-mile delivery, international shipping, or retail replenishment. Mobile workflows, master data attributes, exception management, self-reporting, and business intelligence should all be easily configurable based on your business needs.
The importance of provider reliability cannot be overstated. Look for a company that offers robust customer support, ongoing training, and regular system updates to address evolving industry and business needs. This is a recipe for long-term success, giving you the ability to maximize system capabilities.
An Integrated TMS: Creating the Future of Supply Chain Efficiency
An integrated supply chain TMS plays a pivotal role in powering synchronized logistics so businesses can streamline operations and respond in real time to supply chain challenges. Consolidating data from multiple systems enhances visibility, optimizes routes, and minimizes disruptions. Companies can make informed decisions, improve delivery performance, and reduce costs through advanced analytics and automation. These next-generation systems ensure a more agile, efficient, and customer-centric supply chain.
Tramm TMS is the first SaaS platform using advanced technology to enable companies to easily manage all transportation assets, both owned and third-party, from the first mile to the last mile.
It is purpose-built to streamline supply chain operations, synching data to create a single source of truth. By eliminating data silos and tapping the power of AI-driven insights, Tramm streamlines processes and ensures a consistency of action across the supply chain.
With its modular, scalable architecture, Tramm’s solution set includes an order management system (OMS), a visibility and control tower module, a global transporter module, a dashboards module, and a driver app. Its platform marries flexibility with optimization, powering a customer-centric approach that delivers measurable results. To learn more about Tramm’s ability to power synchronized logistics and increase supply chain efficiency in your organization, request a demo today.